Inferring Gender from Names on the Web: A Comparative Evaluation of Gender Detection Methods

نویسندگان

  • Fariba Karimi
  • Claudia Wagner
  • Florian Lemmerich
  • Mohsen Jadidi
  • Markus Strohmaier
چکیده

Computational social scientists often harness the Web as a “societal observatory” where data about human social behavior is collected. This data enables novel investigations of psychological, anthropological and sociological research questions. However, in the absence of demographic information, such as gender, many relevant research questions cannot be addressed. To tackle this problem, researchers often rely on automated methods to infer gender from name information provided on the web. However, little is known about the accuracy of existing gender-detection methods and how biased they are against certain sub-populations. In this paper, we address this question by systematically comparing several gender detection methods on a random sample of scientists for whom we know their full name, their gender and the country of their workplace. We further suggest a novel method that employs web-based image retrieval and gender recognition in facial images in order to augment name-based approaches. Our findings show that the performance of name-based gender detection approaches can be biased towards countries of origin and such biases can be reduced by combining name-based an image-based gender detection methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Author gender identification from text using Bayesian Random Forest

Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...

متن کامل

What's in a Name? Using First Names as Features for Gender Inference in Twitter

Despite significant work on the problem of inferring a Twitter user’s gender from her online content, no systematic investigation has been made into leveraging the most obvious signal of a user’s gender: first name. In this paper, we perform a thorough investigation of the link between gender and first name in English tweets. Our work makes several important contributions. The first and most ce...

متن کامل

A Comparative Study of Demographic Attribute Inference in Twitter

Social media platforms have become a major gateway to receive and analyze public opinions. Understanding users can provide invaluable context information of their social media posts and significantly improve traditional opinion analysis models. Demographic attributes, such as ethnicity, gender, age, among others, have been extensively applied to characterize social media users. While studies ha...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Hierarchical Bayesian Models for Latent Attribute Detection in Social Media

We present several novel minimally-supervised models for detecting latent attributes of social media users, with a focus on ethnicity and gender. Previous work on ethnicity detection has used coarse-grained widely separated classes of ethnicity and assumed the existence of large amounts of training data such as the US census, simplifying the problem. Instead, we examine content generated by use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016